Sub-20nm Gate definition for MESFET/MOSFET IC applications

Varadarajan Vidya
EE290B Project Presentation
May 13, 2003

Outline

- Motivation for the study
- Process details
- Experimental results
- Possible causes behind observed failures
- Conclusions

Motivation: Going beyond the end of the Roadmap

- ITRS roadmap shows 9nm technology node as the end
- MESFETs are possible solutions beyond 9nm
 - Simple to fabricate
 - Better performance
 - Low power consumption

MESFET process flow

Process details 1: Layout

- Layout done using Cadence
- Channel lengths from 12nm to 90nm
- Channel widths from 100nm to 15µm
- Wiggles introduced to improve mechanical stability of the gate: wider gates feasible.

Process details 2: exposure and ashing conditions

- Resist used: HSQ bilayer composed of 15% HSQ on 1.8% AZPN
- Exposure : Field size : 131µm x 131µm
 - Exposure 1: Dose range 400 μC/cm² 1600 μC/cm²
 - Exposure 2: Dose range 1100 μC/cm² 2500 μC/cm²
- Ashing : using O₂ plasma
 - Assumed isotropic etching.
 - Etch rate=10.6nm/min: measured by step height measurement
 - Ashing conditions: T=300K; Pressure=25mtorr; O₂=30sccm; Forward power=20W

Process details 3: etching conditions

- HBr/Cl₂/O₂ etch chemistry used to etch silicon.
- Selectivity to silicon nitride evaluated using the recipe
- 3-step etch:

	Breakthrough	Main Etch	Overetch
CF ₄ (sccm)	100	0	0
HBr (sccm)	0	150	200
Cl ₂ (sccm)	0	50	0
O ₂ (sccm)	0	0	1
Pressure (mtorr)	13	12	35

Results: Exposure on blank wafer

- Ashed resist feature size ~ 11nm
- Smallest final feature size ~
 15nm: proposed process works
- Oxygen plasma not very isotropic: pressure could have been higher
- Dose inadequate : lot of CD variation and broken lines
- Pattern transfer: some of the gates look discontinuous.

Drawn lines were probably too long to be supported well by the pads at the ends!

- a. Pre ashing 20nm line
- b. Post ashing 20nm line
- c. Post etching 20nm line

Results: Exposure on gate stack

- Stack composed of 80A silicon nitride under 500A amorphous silicon
- Smallest feature on resist ~ 10nm
- Typical 20 nm feature on resist ~15nm
- Final gate widths on silicon ~25nm
- No ashing done since wafer was still underexposed!
- Bending observed in 1.5μm gates.
- Wiggled gates showed good mechanical stability
- Selectivity to nitride not very high
- HF etched away thin silicon gates!

Just developed resist

Transferred silicon features

Failures and their possible causes

- Bent and broken gates:
 - Dose too low (CD variation)
 - Lines too long (broken lines)
 - Bending caused by introducing wet etch followed by rinsing and blow drying on wafer
- Poor pattern transfer from AZPN to silicon:
 - Exposure 1: deep trenches might have tapered the top of the gate and provided no contrast to be viewed under SEM
 - Exposure 2: Narrow silicon gates etched away during HF dip to strip HSQ!

Conclusions

- Sub-20nm resist patterns can be obtained using ebeam lithography followed by resist ashing: SEM numbers are not very reliable at such dimensions.
- Line width/length ratio should typically not be more than about 100.
- Wiggled gates have excellent mechanical stability
- Selectivity of HBr/Cl₂/O₂ etch recipe to silicon nitride not very high.
- HF etch can etch thin silicon films!